Name	Date	Class	
	_ =====================================	Ciaco	

16-2 Review and Reinforcement

The Law of Chemical Equilibrium

On the line at the left, write the letter of the description that best matches each term.

- 1. equilibrium position
 2. law of chemical equilibrium
 3. reaction quotient
 4. homogeneous equilibria
 5. law of mass action
 e. e. e.
- 6. heterogeneous equilibria
- _____ 7. equilibrium constant

- **a.** equilibrium condition for a chemical reaction involving substances in more than one state
- **b.** used to determine if a reaction has reached equilibrium
- **c.** depends on the initial concentrations of the substances in a reaction
- **d.** states that every reaction proceeds to an equilibrium state with a specific K_{eq}
- e. expresses the relative concentration of reactants and products at equilibrium in terms of an equilibrium constant
- f. equilibrium condition for reactions in which products and reactants are in the same state
- **g.** the ratio of product concentration to reactant concentration at equilibrium

Answer each of the following questions in the space provided.

- 8. What is the equilibrium expression for the equation $H_2(g) + I_2(g) \implies 2HI(g)$?
- 9. What is the equilibrium expression for the equation $NH_4Cl(s) \implies NH_3(g) + HCl(g)$?
- 10. What is the equilibrium expression for the equation $As_4O_6(s) + 6C(s) \implies As_4(g) + 6CO(g)$?
- 11. What is the equilibrium expression for the equation $SnO_2(s) + 2CO(g) \implies Sn(s) + 2CO_2(g)$?
- 12. What is the equilibrium expression for the equation $CaCO_3(s) \iff CaO(s) + CO_2(g)$?

Name	_ Date	Class		
16–2 Review and Reinforcement (continued)				
13. For the reaction $2CO(g) \rightleftharpoons C(s) + CO_2(g)$, K_{e} concentrations are measured: $[CO] = 0.034$ equilibrium? If not, in which direction will the	$M_{1} [CO_{2}] = 3$	$6.6 \times 10^{-17} M$. Is this reaction at		
14. For the reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$, K_0 concentrations are measured: $[N_2O_4] = 2.0 M$, not, in which direction will the reaction process.	$[NO_2] = 0.2 M.$	particular time, the following Is this reaction at equilibrium? If		
15. For the reaction $2ICl(g) \rightleftharpoons I_2(g) + Cl_2(g)$, concentrations are measured: [ICl] = 2.5 M equilibrium? If not, in which direction will the	$[I_2] = 2.0 M,$	$[Cl_2]$ = 1.2 <i>M</i> . Is this reaction at		
Match each statement with the appropriate letter. or not at all.	Each letter cal	n be used once, more than once,		
 16. The equilibrium concentration of is much greater than that of reacta 17. The equilibrium concentration of is much less than that of reactants 18. There is a considerable amount of 	nts. products	 a. K_{eq} is much greater than 1. b. K_{eq} is about equal to 1. c. K_{eq} is much less than 1. 		
reactants and products at equilibr		•		
Answer each of the following questions in the span19. What effect does changing the initial concer equilibrium constant?	atration of subs	stances in a reaction have on the		
20. What is meant when chemists say that the eq	uilibrium positi			
21. Why are solids and pure liquids left out of eq				

22. How is the reaction quotient (Q) related to the equilibrium constant (K_{eq}) ?

16–2 Practice Problems

1. Write the equilibrium expression for the oxidation of hydrogen to form water

 $2H_2(g) + O_2(g) \implies 2H_2O(g)$

- 9. Write the equilibrium expression for the following reaction. $Hg(g) + I_2(g) \iff HgI_2(g)$
- 2. Write the equilibrium expression for the formation of nitrosyl bromide. $2NO(g) + Br_2(g) \implies 2NOBr(g)$
- 10. Write the equilibrium expression for the following reaction. $SnO_2(s) + 2CO(g) \implies Sn(s) + 2CO_2(g)$
- 3. Write the equilibrium expression for the following reaction. $NO(g) + O_3(g) \implies O_2(g) + NO_2(g)$
- 11. Write the equilibrium expression for the following reaction. $C(s) + CO_2(g) \implies 2CO(g)$
- 4. Write the equilibrium expression for the following reaction. $CH_4(g) + Cl_2(g) \implies CH_3Cl(g) + HCl(g)$
- 12. Write the equilibrium expression for the following reaction. $FeO(s) + CO(g) \implies Fe(s) + CO_2(g)$
- Write the equilibrium expression for the following reaction. $CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$
- 13. Write the equilibrium expression for the following reaction. $KCl(l) + Na(l) \implies NaCl(l) + K(g)$
- 6. Write the equilibrium expression for the following reaction. $CO(g) + 2H_2(g) \implies CH_3OH(g)$
- 14. Write the equilibrium expression for the following reaction. $NaCl(s) + H_2SO_4(l) \rightleftharpoons$ $HCl(g) + NaHSO_{a}(s)$
- 7. Write the equilibrium expression for the combustion of ethane at high temperature. $2C_2H_6(g) + 7O_2(g) \implies 4CO_2(g) + 6H_2O(g)$
- 15. Write the equilibrium expression for the following reaction. $P_4(s) + 6NO(g) \rightleftharpoons P_4O_6(s) + 3N_2(g)$
- Write the equilibrium expression for the decomposition of ethane. $C_2H_6(g) \Leftrightarrow C_2H_4(g) + H_2(g)$
- **16.** Write the equilibrium expression for the following reaction. $2NO(g) + 2H_2(g) \implies N_2(g) + 2H_2O(l)$

16-2 Practice Problems (continued)

- 17. Write the equilibrium expression for the following reaction. $H_2CO_3(s) \rightleftharpoons H_2O(l) + CO_2(g)$
- 18. Write the equilibrium expression for the following reaction. $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(l)$
- **19.** At 740°C, $K_{eq} = 0.0060$ for the decomposition of calcium carbonate (CaCO₂), which is described by the equation $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ Find Q and predict how the reaction will proceed if $[CO_2] = 0.0004 M$.
- 20. For the reaction $CO(g) + H_2O(g) \rightleftharpoons H_2(g) + CO_2(g)$ $K_{\text{eq}} = 5.10 \text{ at } 527^{\circ}\text{C.}$ If [CO] = 0.15 M, [H₂O] = 0.25 M, $[H_2] = 0.42 M$, and $[CO_2] =$ 0.37 M, calculate Q and determine how the reaction will proceed.
- **21.** At 340°C, $K_{eq} = 0.064$ for the reaction $Fe_2O_3(s) + 3H_2(g) \implies 2Fe(s) + 3H_2O(g)$ Given that $[H_2] = 0.45 M$ and $[H_2O] = 0.37 M$, find Q and predict how the reaction will proceed.
- **22.** At 2130°C, $K_{eq} = 0.0025$ for the reaction $N_2(g) + O_2(g) \Leftrightarrow 2NO(g)$ If $[N_2] = 0.81 M$, $[O_2] = 0.75 M$, and [NO] =0.030 M, find Q and determine the direction in which the reaction will proceed.

- 23. Ammonia is synthesized from nitrogen and hydrogen in the reaction $N_2(g) + 3H_2(g) \Rightarrow 2NH_3(g)$ At 500°C, the equilibrium constant for this reaction is 0.080. Given that $[NH_2] = 0.0596$ M, $[N_2] = 0.600 M$, and $[H_2] = 0.420 M$, find Q and predict how the reaction will proceed.
- 24. The decomposition of antimony pentachloride (SbCl₅) is described by the equation $SbCl_5(g) \implies SbCl_3(g) + Cl_2(g)$ At 448°C, the equilibrium constant for this reaction is 0.0251. What is the value of Q if $[SbCl_5] = 0.095 M$, $[SbCl_3] = 0.020 M$, and $[Cl_2] = 0.050 M$? How will this reaction proceed?
- 25. At 1000° C, $K_{eq} = 1.0 \times 10^{-13}$ for the decomposition of hydrofluoric acid (HF), as described in the reaction $2HF(g) \Leftrightarrow H_2(g) + F_2(g)$ If [HF] = 23.0 M, $[H_2] = 0.540 M$, and $[F_2] =$ 0.380 M, determine the value of Q and predict how the reaction will proceed.
- 26. At 1227°C, Keq for the following reaction is 0.15. $2SO_2(g) + O_2(g) \implies 2SO_3(g)$ If $[SO_2] = 0.344 M$, $[O_2] = 0.172 M$, and $[SO_3]$ = 0.056 M, find Q and determine how the reaction will proceed.